skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mitrofanov, Oleg"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The demonstration of epitaxial thin film transfer has enormous potential for thin film devices free from the traditional substrate epitaxy limitations. However, large‐area continuous film transfer remains a challenge for the commonly reported polymer‐based transfer methods due to bending and cracking during transfer, especially for highly strained epitaxial thin films. In this work, a new epoxy‐based, rigid transfer method is used to transfer films from an SrTiO3(STO) growth substrate onto various new substrates, including those that will typically pose significant problems for epitaxy. An epitaxial multiferroic Bi3Fe2Mn2Ox(BFMO) layered supercell (LSC) material is selected as the thin film for this demonstration. The results of surface and structure studies show an order of magnitude increase in the continuous area of transferred films when compared to previous transfer methods. The magnetic properties of the BFMO LSC films are shown to be enhanced by the release of strain in this method, and ferromagnetic resonance is found with an exceptionally low Gilbert damping coefficient. The large‐area transfer of this highly strained complex oxide BFMO thin film presents enormous potential for the integration of many other multifunctional oxides onto new substrates for future magnetic sensors and memory devices. 
    more » « less
  2. Abstract Terahertz (THz) radiation encompasses a wide spectral range within the electromagnetic spectrum that extends from microwaves to the far infrared (100 GHz–∼30 THz). Within its frequency boundaries exist a broad variety of scientific disciplines that have presented, and continue to present, technical challenges to researchers. During the past 50 years, for instance, the demands of the scientific community have substantially evolved and with a need for advanced instrumentation to support radio astronomy, Earth observation, weather forecasting, security imaging, telecommunications, non-destructive device testing and much more. Furthermore, applications have required an emergence of technology from the laboratory environment to production-scale supply and in-the-field deployments ranging from harsh ground-based locations to deep space. In addressing these requirements, the research and development community has advanced related technology and bridged the transition between electronics and photonics that high frequency operation demands. The multidisciplinary nature of THz work was our stimulus for creating the 2017 THz Science and Technology Roadmap (Dhillonet al2017J. Phys. D: Appl. Phys.50043001). As one might envisage, though, there remains much to explore both scientifically and technically and the field has continued to develop and expand rapidly. It is timely, therefore, to revise our previous roadmap and in this 2023 version we both provide an update on key developments in established technical areas that have important scientific and public benefit, and highlight new and emerging areas that show particular promise. The developments that we describe thus span from fundamental scientific research, such as THz astronomy and the emergent area of THz quantum optics, to highly applied and commercially and societally impactful subjects that include 6G THz communications, medical imaging, and climate monitoring and prediction. Our Roadmap vision draws upon the expertise and perspective of multiple international specialists that together provide an overview of past developments and the likely challenges facing the field of THz science and technology in future decades. The document is written in a form that is accessible to policy makers who wish to gain an overview of the current state of the THz art, and for the non-specialist and curious who wish to understand available technology and challenges. A such, our experts deliver a ‘snapshot’ introduction to the current status of the field and provide suggestions for exciting future technical development directions. Ultimately, we intend the Roadmap to portray the advantages and benefits of the THz domain and to stimulate further exploration of the field in support of scientific research and commercial realisation. 
    more » « less